16.2.0 MECHANICS OF MACHINES

16.2.1 Introduction

Mechanics of machines deals with forces, motion and power of machines in motion like hoists and vehicles.

The recommended instructional approach is that which will emphasize on experiments, industrial visits and analysis of various mechanical principles.

16.2.2 General Objectives

- By the end of the module unit, the trainee should be able to:
- a) understand the basic concepts of engineering science
- b) size power requirements of motors used in engineering design
- c) produce models of designed prototypes
- d) apply the knowledge acquired to improve the performance of various equipment

16.2.3 Module Unit Summary and Time Allocation

Code	Sub-Module	Content	Theor	Pract	Time
	Unit	S	у	Hrs	Hrs
16.2.01	Kinematics	 Definition of kinematics of a particle Equations of motion Application of equations of motion Derivation from first principles expression for centripetal acceleration of a particle moving with uniform angular velocity 	4	4	8
16.2.02	Impulse and Momentum	 Definition of linear momentum Explanation of the relationship between force and momentum of a body Explanation of linear impulse Explanation of the 	4	6	10

MECHANICS OF MACHINES

		 relationship between linear impulse and linear momentum of a body Solution of problems in linear momentum and linear impulse Explanation of angular momentum Derivation from first principles, equations of angular momentum and impulse Solution of problems on angular momentum and impulse Verification of the conservation of momentum 			
16.2.03	Mass Moments of Inertia	 Explanation of axial moment of inertia of a mass Statement of expression for mass moment of inertia of an element about three mutually perpendicular axes Derivation of expressions of centroidal mass moment of inertia (common regular objects) Explanation of polar moment of inertia Application of expressions to solve problems Centroidal mass moment of inertia for common regular shapes Statement of parallel axes theorem Application of parallel 	4	2	6

		 axes theorem Definition of radius of gyration Application of expression of radius of gyration to solve problems 			
16.2.04	Area Of Moment of Inertia	 Explanation of axial moment of inertia of an area Elemental area rotated about an axis perpendicular to its plane Derivation of an expression for polar moment of inertia of an area Explanation of the product of inertia Derivation of an expression for the product of inertia of an area Statement of parallel axis theorem Diagram Application of inertia expressions to solve problems in: regular areas Explanation of moments of inertia of any (x, y) with respect to rotated set of axis Statement of expressions for moment of inertia of any (x, y) with rotated axes Application of Mohr's cycle to solve problems 	4	2	6
16.2.05	Belts and Clutches	 Identification of common types of belts Derivation of belt equations 	4	4	8

		 Application of equation to solve belt problems Identification of common clutches Derivation of clutch equations Application of the equations to solve clutch problems Ratio of belt tension Coefficient of friction between belt and pulley Torque in clutches Coefficient of friction in clutches 			
16.2.06	Geared Systems	 Description of different types of gear drives Derivation of equations for gear drives Application of the equations to solve gear drive problems Torque in geared systems Mechanical advantage Efficiency in geared systems 	2	6	8
16.2.07	Dynamics of a Rigid Body in Translation	 Definition of dynamics of a rigid body Statement of the scalar equation for translation Moment of external forces about mass centre of a body Application of the equation to solve problems 	4	4	8
16.2.08	Dynamics of Rigid Body in Rotation	 Identification of rotation of a body about a non- centroidal axis statement of equation of motion for rotation about a non-centroidal axis Balancing of masses 	2	4	6

16.2.09	Dynamics of Rigid Body in Plane	 Statement of plane motion Explanation of equations of plane motion Application of equation of plane motion 	2	4	6
Total Time		30	36	66	

16.2.01 KINEMATICS

Theory

16.2.01T0	Specific Objectives
	By the end of the sub
	module unit, the
	trainee should be able
	to:

- a) define kinematics of a particle
- b) state the equations of motion
- c) apply the equations of motion to solve problems
- d) derive from first principle the expressions for centripetal acceleration of a particle.
- 15.2.08C *Competence* The trainee should have the ability to apply the expressions for stiffness of springs to solve spring problems

Content

16.2.01T1	Definition of		
	kinematics of a		
	particle		
16.2.01T2	Equations of motion		
	- linear motion		
	- angular motion		

16.2.01T3 Application of equations motion

- linear velocity,

- angular acceleration
- angular
- displacement
- 16.2.01T4 Deriva princip

Derivation from first principles expression for centripetal acceleration of a article moving with uniform angular velocity

Suggested Learning Resources

- Relevant text books
- Hand outs
- -centripetal force apparatus -power supply (0 –
- 12 V) rated at 6 or
- 8 A
- -ruler
- -stopwatch
- -newton meter
- -balance
- -g clamps
- -string
- -safety screen

16.2.02 IMPULSE AND MOMENTUM

Theory

Specific Objectives
By the end of the sub
module unit, the
trainee should be able
to:

- a) define linear momentum
- b) explain the relationship between force and momentum of a body
- c) explain linear impulse
- d) explain the relationship between linear impulse and linear momentum
- e) explain angular momentum
- f) solve problems in linear impulse and linear momentum.
- g) derive from first principle, equations of angular momentum and impulse
- h) solve problems on angular momentum and impulse

16.2.02C *Competence* The trainee should have the ability to perform the experiment to verify the principles of conservation

Content

- 16.2.02T1 Definition of linear momentum16.2.02T2 Explanation of the
 - relationship between force and momentum of a body
- 16.2.02T3 Explanation of linear impulse
- 16.2.02T4 Explanation of the relationship between linear impulse and linear momentum of a body
- 16.2.02T5 Solution of problems in linear momentum and linear impulse
- 16.2.02T6 Explanation of angular momentum
- 16.2.02T7 Derivation from first principles, equations of angular momentum and impulse
- 16.2.02T8 Solution of problems on angular momentum and impulse

Practice

- 16.2.02P0 Specific Objectives By the end of the sub module unit, the trainee should be able to verify the principle of conservation of momentum in collision of bodies.
- 16.2.02P1 *Content* verification of the conservation of momentum
 - Collision of bodies in linear motion

- Collision of bodies in angular motion

Suggested Learning Resources

- Relevant text books
- Hand outs
- Toy cars
- Procedure sheet

Specific Objectives

a) explain axial

of a mass

b) state expressions

By the end of the sub module unit, the

trainees should be bale

moment of inertia

16.2.03 MASS MOMENTS OF INERTIA

Theory

to:

16.2.03T0

16.2.03C

Competence The trainee should have the ability to apply the expression of radius of gyration to solve problems

Content

16.2.03T1 Explanation of axial moment of inertia of a mass 16.2.03T2 Statement of expression for mass moment of inertia of an element about three mutually perpendicular axes 16.2.03T3 Derivation of expressions of Centroidal mass moment of inertia (common regular objects) 16.2.03T4 Explanation of polar moment of inertia 16.2.03T5 Application of expressions of Centroidal mass moment of inertia to solve

problems

- i) apply the parallel axes theorem to solve problems
 - j) define radius of gyration

h) explain the parallel

axes theorem

 k) apply the expression of radius of gyration to solve problems.

200

for mass moment of inertia of an element about three

mutually perpendicular axes.c) derive expressions for mass moment

- of inertia d) explain polar moment of inertia
- e) derive an expression of polar moment of inertia
- f) apply the expressions to solve problems
- g) state parallel axis theorem

16.2.03T6	Centroidal mass
	moment of inertia for
	common regular
	shapes
16.2.03T7	Statement of parallel
	axes theorem
16.2.03T8	Explanation of parallel
	axes theorem
16.2.03T9	Application of parallel
	axes theorem
16.2.03T0	Definition of radius of
	gyration
16.2.03T11	Application of
	expression of radius of
	gyration to solve
	problems

Suggested Learning Resources

- Relevant text books
- Hand outs
- Rotation motor
- Various bodies
- Procedure sheet
- Specification manual

16.2.04 AREA OF MOMENT OF INERTIA

Theory

- 16.2.04T0 Specific Objectives By the end of the sub module unit, the trainee should be able to:
 - a) explain axial moment of inertia of an area
 - b) derive an expression for axial moment of an area

- c) explain polar moment of inertia of an area
- d) derive an expression for the polar moment of inertia of an area
- e) explain the product of inertia of an area
- f) derive an expression for the product of inertia of an area
- g) state the parallel axis theorem
- h) apply the inertia expressions to solve problems
- i) explain moment of inertia of an area with axes (x, y) with respect to rotated set of axes (x¹, y¹)
- j) state expressions for moments of inertia of an area with rotated set of axes
- k) apply Mohr's cycle to solve problems related to rotation of axis

16.2.04C

let.cor

Competence The trainee should have the ability to apply Mohr's cycle to solve problems related to rotation of axis

Content

16.2.04T1	Explanation of axial		Theory
	moment of mertia of	1620570	Constitution
16 2 0472	an area	16.2.0510	Specific Objectives
16.2.0412	Elemental area rotated		By the end of the sub
	about an axis		module unit, the
	perpendicular to its		trainee should be able
	plane		to:
16.2.0413	Explain polar moment		a) identify common
	of inertia of an area		types of belts
16.2.0414	Derivation of an		b) derive belts
	expression for polar		equations
	moment of inertia of		c) apply the equations
	an area		to solve belt
16.2.04T5	Explanation of the		problems
	product of inertia		d) identify common
16.2.04T6	Derivation of an		clutches
	expression for the		e) derive equations
	product of inertia of an		for clutches
	area	\sim	f) apply the equation
16.2.04T7	Statement of parallel	S.	to solve clutches
	axis theorem	C	problems
16.2.04T8	Application of inertia		
	expressions to solve	16.2.05C	Competence
	problems		The trainee should
	- Regular areas		have the ability to
	- Composite areas		perform experiments
16.2.04T9	Moments of inertia of		to determine:
	any (x, y) with respect		- the ratio of belt
	to rotated set of axis		tensions
16.2.04T10	State expressions for		- the coefficient of
	moments of inertia of		friction between
	an area with rotated		the pulley and the
	set of axis		belt
16.2.04T11	Application of Mohr's		- torque in clutches
	cycle to solve roblems		- coefficient of
	-		friction in clutches
	Suggested Learning		includin in clutches
	Resources		Contant
	- Relevant text books	16 2 05T1	Identification common
	- Hand outs	10.2.0311	types of belts
	- Workshon realia		Flot
	workshop realia		- Flat
16 2 05	RELTS AND	16.0.05770	- vee
10,4,03	CLUTCHES	16.2.0512	Derivation of belt
	CLUICHES		equations

	 Tension Angle of lap Power Size of belt Number of belts Torque 		b) perform experiments to determine the coefficient of friction between the pulley and the
16.2.05T3	Application of		belt
	equation to solve belt		c) perform
	problems		determine torque in
	on:		clutches
	- Flat belt		d) perform
	- Vee belt		experiments to
	- Power transmitted		determine
	- Angle of lap		coefficient of
	- Tension		friction in clutches
16.0.0574	- Size of belts		
16.2.0514	Identification of		Content
	nlato	16.2.05P1	Ratio of belt tension
	- plate	-01	- Flat belts
	- Conical		- Vee belts
16.2.05T5	- Conical Derivation of clutch	16.2.0512	Coefficient of friction
10.2.0313	equations		between beit and
	- Force	16.2.05T3	Torque in clutches
	- Torque transmitted	10.2.0313	Plata clutches
	- Number of plates		- Flate clutches
	- Efficiency		- Contributiones
16205T6	Application of the		- Centinugai
10.2.0210	equations to solve	16 2 05T4	Coefficient of friction
	clutch problems	10.2.0314	in clutches
	Practice		Suggested Learning
			Resources
16.2.05P0	Specific Objectives		- Relevant text
	By the end of the sub		books
	module unit, the		- Hand outs
	to:		- Real belts and
	iu. a) perform		clutches
	a) perform experiments to		- Demonstration
	verify the ratio of		- Discussion
	belt tensions		- Experiment

- Rotating motor and its pulley
- Oral practical tests
- Continuous practical tests

16.2.06 GEARED SYSTEMS

Theory

- 16.2.06T0 Specific Objectives By the end of the sub module unit, the trainee should be able to:
 - a) describe different types of gear drives
 - b) drive equations for gear drives
 - c) apply the equations to solve gear drive problems
- 16.2.06C Competence The trainee should have the ability to perform experiment to determine:
 - torque in geared systems
 - mechanical advantage in geared systems
 - efficiency in geared systems

Content

- 16.2.06T1 Description of different types of gear drives
 - Spur gear trains

- Epicyclic gear systems
- 16.2.06T2 Derivation of equations for gear drives
 - Velocity ratio
 - Radius
 - Pressure angle
 - Accelerating torque
 - Friction torque
 - Input and output members for an epicyclic gear train
 - Speed and sense of rotation
 - Power transmitted

16.2.06T3

Application of the equations to solve gear drive problems

Practice

16.2.06P0 Specif By the

Specific Objectives By the end of the topic, the trainee should be able to:

- a) perform experiment to determine the torque in geared systems
- b) perform experiment to determine mechanical advantage in
 - geared systems
- c) perform experiment to determine the efficiency in geared systems

16.2.06T1	<i>Content</i> Torque in geared systems
	- Spur gears
16.2.06T2	Mechanical advantage
16.2.06T3	 Spur gears Epicyclic gears Efficiency in geared systems

- Spur gears
- Epicyclic gears

Suggested Learning Resources

- Relevant text books
- Hand outs
- Spur gears
- Epicyclic gears

16.2.07 DYNAMICS OF A RIGID BODY IN TRANSLATION

Theory

- 16.2.07T0 Specific Objectives By the end of the submodule unit, the trainee should be able to:
 - a) define dynamics of a rigid body
 - b) state the scalar equation for translation
 - c) determine moment of external forces about mass centre of a body
 - d) apply the equation to solve problems

16.2.07C *Competence* The trainee should have the ability to determine moment of external forces about mass centre of a body

Content

- 16.2.07T1 Definition of dynamics of a rigid body
- 16.2.07T2 Statement of the scalar equation for translation
- 16.2.07T3 Moment of external forces about mass centre of a body16.2.07T4 Application of the
 - equation to solve problems

Suggested Learning Resources

- Relevant text books
- Hand outs
- 16.2.08

DYNAMICS OF RIGID BODY IN ROTATION

Theory

- 16.2.08T0 Specific Objectives By the end of the sub module unit, the trainee should be able to:
 - a) identify rotation of a body about a noncentrodial axis
 - b) state equations of motion for rotation about a noncentrodial axis
 - c) balance masses

16.2.08C	<i>Competence</i> The trainee should have the ability to balance masses		b) explain the equations of plane motionc) apply the equations to solve problems
16.2.08T1 16.2.08T2	<i>Content</i> Identification of rotation of a body about a non- centrodial axis Statement of equation	16.2.08C	<i>Competence</i> The trainee should have the ability to apply the equations to solve problems
	of motion for rotation about a non-centroidal axis	16.2.09T1	<i>Content</i> Statement of plane motion
16.2.08T3 16.2.09	 Balancing of masses Static balancing Dynamics balancing Suggested Learning Resources Relevant text books Hand outs Mass DYNAMICS OF RIGID BODY IN PLANE	16.2.09T2 16.2.09T3	 Vector Scalar Explanation of equations of plane motion Vector Scalar Application of equation of plane motion Linear dynamic condition Angular dynamic condition
	Theory		Suggested Learning Resources
16.2.09T0	Specific Objectives By the end of the sub module unit, the trainee should be able to: a) state the equations of plane motion		-relevant text books -hand outs -rigid body in plane